Thursday, June 1, 2023

What Would AI Say? Unedited AI Summaries of Moldx SCC LCD: Its Long Evidence & Analysis Sections

 Below I show the GPT4 summary of the MolDx analysis of a skin cancer test.

I am NOT providing this as an accurate or endorsed summary, but rather, as a "for example" for people interested in the development of AI summaries of things.   It digests the 2000 word concluding analysis, to 300 words.

Original LCD

http://www.discoveriesinhealthpolicy.com/2023/06/moldx-draft-lcd-l39614-non-coverage-of.html


AI SUMMARY OF THE CONCLUSIONS

NOT VALIDATED

FOR DISPLAY PURPOSES ONLY

The analysis concerns a molecular laboratory test known as the 40-Gene Expression Profile (40-GEP) for skin cancer (cutaneous squamous cell carcinoma, cSCC). The 40-GEP can stratify metastatic risk, but its consistent interpretation and integration into patient management plans remain unclear. There's also a lack of defined management strategies based on 40-GEP results, which are vital for measuring patient outcomes.

The majority of 40-GEP test results fall into Class 1 (low metastatic risk) or Class 2A (moderate risk), while Class 2B (high risk) results are relatively rare. Furthermore, it's noted that the test hasn't convincingly demonstrated superiority to current staging tools and clinicopathologic factors.

Interestingly, Class 2B results often occur in patients with multiple risk factors, who would already be identified as high-risk using current tools. The analysis suggests further exploration into patients with Class 2B results who aren't identified as very high-risk by other methods, but could benefit from intensified management due to 40-GEP results.

One of the key concerns is the risk of patients being under-treated as a result of 40-GEP, as some clinicians may interpret a Class 1 result as a very low metastatic risk, leading to potential de-escalation of care that may not be warranted. The clinical validity and utility of 40-GEP could be improved by integrating it with other clinicopathologic factors within existing guideline frameworks.

There are also some limitations in the 40-GEP literature. Most notably, the literature does not address test performance in patient populations with certain exclusion criteria proposed by the test manufacturer. Moreover, it doesn't thoroughly examine distinctiveness, homogeneity, and monotonicity, and c-index of the 40-GEP to better assess its overall performance.

The analysis concludes that although molecular markers like the 40-GEP could enhance cSCC risk stratification, their clinical validity and utility over current methods have not yet been established. As such, continued monitoring of emerging evidence and updates to coverage based on new information are recommended

###

That was fun, so I went back and put the 4300 word EVIDENCE REVIEW into GPT4 for a summary.  The result is about 10% or 450 words.  Again, I am not validating this, it is for AI curiosity readers.

##

EVIDENCE REVIEW AI SUMMARY

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Despite it generally being manageable, a subset of patients will develop metastatic disease. Traditional tumor staging, provided by American Joint Committee on Cancer (AJCC) and the Brigham and Women’s Hospital (BWH) systems, while being robust, fail to account for the heterogeneity in tumor behavior, leading to some patients being inaccurately classified in terms of their metastatic risk.

To address this, genomic tests like the 40-gene expression profile (40-GEP) test have been developed to better predict metastatic risk in cSCC patients. The 40-GEP test stratifies patients with one or more risk factors into low (Class 1), moderate (Class 2A), or high metastatic risk (Class 2B) groups. The test was developed using a discovery and development cohort and validated using archival tissue from a separate cohort of high-risk primary cSCC patients with known 3-year outcomes. In statistical analyses, the 40-GEP signature maintained predictive value and demonstrated significant capability of stratifying metastatic risk.

In the second study presented by Ibrahim et al, the expansion of the previous cohort to 420 patients showed a similar predictive capability of the 40-GEP in predicting metastatic risk. The median time to metastasis was 0.9 years, and the metastatic rates for Class 1, 2A, and 2B were consistent with previous findings.

Arron et al evaluated a subset of patients with cSCC of the head and neck, further confirming the predictive ability of the 40-GEP. Clinical utility of the 40-GEP lies in its potential to improve prognostic value and facilitate individualized risk assessment, treatment, and follow-up when incorporated into existing risk-assessment frameworks.

However, it is important to note that the 40-GEP should not be used as a surrogate for standard care but rather as an additional data point when determining individualized management plans for high-risk patients. Clinical vignettes and clinician surveys have demonstrated that the 40-GEP could influence decisions regarding treatment plans, yet outcomes data from prospective studies documenting specific changes in management are currently lacking.

The preliminary results from the Clinical Utility and Health Outcomes Study (UTILISE) showed the 40-GEP's potential impact on clinician perception of metastatic risk and on the intensity of management. It also demonstrated consistency with the increased risk associated with Class 2A and 2B results. However, the precise changes to management were not published and clinical patient outcomes are not available at the time of publication.

In conclusion, the 40-GEP is a promising tool that, when used alongside existing clinical staging systems and risk-assessment frameworks, could potentially enhance personalized treatment strategies and prognostic accuracy in cSCC. However, further data are required, particularly from prospective studies, to validate its clinical utility and determine the extent of its impact on management decisions and patient outcomes.' 



###

Finally, the following is an AI "Summary of the two summary parts" show above.

While cutaneous squamous cell carcinoma (cSCC) is generally manageable, traditional staging systems fail to adequately account for heterogeneity in tumor behavior, leading to a subset of patients being inaccurately classified in terms of metastatic risk. The 40-gene expression profile (40-GEP) test, a molecular laboratory tool, has been developed to enhance risk stratification by categorizing patients into low (Class 1), moderate (Class 2A), or high (Class 2B) metastatic risk groups. Multiple studies have validated the predictive capability of the 40-GEP, demonstrating its potential to improve prognostic value and facilitate individualized risk assessment, treatment, and follow-up.


However, it's crucial to understand that the 40-GEP isn't a replacement for standard care, but an additional element for personalized management plans. Its interpretation and integration into care remain unclear, as outcomes data from prospective studies and defined management strategies based on 40-GEP results are currently lacking. Furthermore, there's concern about the risk of under-treatment due to possible misinterpretation of Class 1 results leading to unwarranted de-escalation of care.


The test's clinical validity and utility could be improved by integration with other clinicopathologic factors within existing guideline frameworks. Although the 40-GEP can enhance cSCC risk stratification, its superiority to current methods hasn't been convincingly demonstrated. Limitations within the 40-GEP literature, such as not addressing test performance in patient populations with certain exclusion criteria and not thoroughly examining key statistical properties, need to be addressed for better overall assessment.


In conclusion, while the 40-GEP shows promise, it's evident that further data and research are required, especially from prospective studies, to validate its clinical utility and better define its role in patient management. Continued monitoring of emerging evidence and adaptation based on new information are recommended.


####

In the interest of seeing what AI can do and can't do, I fed GPT4 the entire SCC LCD and asked it for advice.  Again, this is more about testing what AI software can do, and how the AI writes in its current development.

###

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.